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Abstract. An example of billiards in a moving boundary, which exhibits regular and chaotic 
motion, has been discovered recently. The specific system is the motion of a particle inside 
a circular billiard table which rotates uniformly about a point on its edge. At one energy 
the motion becomes ergodic, but is regular for very low and for very high energies. 

In the present work we study the quantum mechanics of the system, and calculate 
numerically the energy spectrum. In the semiclassical limit, we show that for energies near 
to where the system is ergodic, the level spacing distribution is Wigner. As h -f CO the 
system becomes equivalent to the stationary case, but the spectral statistics for low energies 
is indistinguishable between Wigner and Poissonian. For some intermediate h we find 
that the distribution becomes very Poissonian even though the energy levels used are in 
the chaotic region of the classical motion. 

1. Introduction 

Little work has been done on billiard systems which exhibit chaos purely due to the 
rotation of the boundary. Most work has been carried out on systems where chaotic 
motion is due to the shape of the boundary, such as the stadium of Bunimovich [l] ,  
the Sinai billiards [2], heart-shaped boundaries [3], or due to magnetic fields such 
as the elliptical billiards of Berry and Robnik [4] and the Aharonov-Bohm billiards 
[ 5 ] .  Rotation is one of the simplest ways of introducing chaos to regular motion. We 
consider the simplest such system, a circular billiard rotating in its own plane about 
a point on its edge. This has the interesting property that for no rotation the system 
is simply a circular billiard, which is of course fully separable, and thus a superb 
example of regular motion. But as soon as rotation is introduced the system has regions 
of phase space which are very chaotic. For a particular energy hypersurface, the 
proportion of phase space which is chaotic depends on the energy. For low and high 
energies it is small, but for intermediate values it is quite high, peaking at critical 
energy where no regular regions can be seen, and this happened close to a bifurcation 
of a fixed point into a two-cycle. These were facts gathered in a previous paper, Fairlie 
and Siegwart [6]. The purpose of this paper is to study the quantum mechanics of 
this system. 

The correspondence principle has been used widely in quantum mechanics to 
predict properties of quantum systems from their classical analogues. Torus quantisa- 
tion is one such example where the conservation of quantities other than energy in 
the classical system implies the quantisation of those quantities in the quantum system, 
and adds extra labels to the energy eigenvalue. However, for classically chaotic systems 
such quantities are no longer conserved. For example, a circular billiard has conserved 

0305-4470/89/ 173537 + 14$02.50 @ 1989 IOP Publishing Ltd 3537 



3538 D K Siegwart 

angular momentum about the centre, but the stadium of Bunimovich has not. Then 
torus quantisation is impossible, and the quantum system has very different properties. 
The wavefunction cannot be properly labelled, and so there is a loss of information 
about the state. Not only does the wavefunction give a probabilistic description of 
physical laws, but it is itself statistical in nature. Much work has been done by Dyson, 
Mehta, Porter and others [7] using these ideas for the energy levels of nuclei. Because 
these properties are fundamentally different from the usual quantum properties it seems 
justified to call them examples of ‘quantum chaos’, although a proper definition of 
this term has not been made. 

It is not at all easy to formulate a mathematical framework for such systems, and 
it becomes necessary to study a wide variety of particular examples, in order to find 
some common properties, which can then be tied to a proper mathematical foundation. 
Present work centres on numerical analysis, and the use of present theories in regimes 
where maybe they are strained. 

In this paper we continue this approach in the hope that we can gain some insight 
into quantum chaos. In particular, we look at energy level statistics, and test predictions 
about the energy level spacings distribution P ( S ) ,  where S is the ratio of the nearest- 
neighbour spacing to the local mean spacing. Classically integrable systems have been 
shown by Berry and Tabor to have Poissonian statistics [SI: 

P( S )  = e-S. (1) 

But time-reversible ergodic systems are expected to have Gaussian orthogonal ensemble 
(GOE) statistics [ 9 ] :  

P ( S )  = (n - /2 )S  exp(-n-S2/4). (1.2) 

Time-violating ergodic systems are expected to have Gaussian unitary ensemble (GUE) 

statistics [IO]: 

P ( S )  = (32S2/v2) exp(-4S2/n-). (1.3) 

Energy levels of classically chaotic systems are eigenvalues of infinite-dimensional 
matrices, which are expected to behave as typical members of random matrix ensembles. 
If the Hamiltonian has time-reversal symmetry ( T ) ,  then the ensemble consists of real 
symmetric matrices (GOE) and obeys (1.2). If the Hamiltonian does not have T, nor 
an equivalent symmetry, then the ensemble consists of complex Hermitian matrices 
(GUE) and obeys (1.3). 

Our system does not have T, but the Hamiltonian is invariant under SXT, time 
reversal with reflection in the x axis. This is the ‘false’ time-reversal symmetry of 
Robnik and Berry, and so it is expected to be GOE-like. 

2. The Hamiltonian 

We use the same terminology as [ 6 ] .  A free particle of unit mass is inside a circular 
billiard table of unit radius, rotating at unit angular velocity about a point on its edge, 
which is chosen to be the origin. We transform to the rotating frame in which the 
boundary is stationary, and obtain the classical Hamiltonian 

H = P i  + P; - 2 ( XPy - YPX ) (2.1) 
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where (x, y )  is the position of the particle in the rotating frame, and ( p , , p , )  is its 
conjugate momentum. We then replace p by the operator -ihV such that 

H = -h2V2+2ihd,. (2.2) 

%= -v2+2iaa ,  (2.3) 

(2.4) 

We look at the rescaled Hamiltonian 

where a = l / h .  This can also be written 
2 2  = -(dz -iae,,x,)2 - a x ,  

which shows that the system is equivalent to a particle in a uniform magnetic field of 
strength 2 ( A ,  = E,,x,) and in a quadratic potential field V =  -x:. 

Wavefunctions are made up of superpositions of eigenstates $(x) exp( - i 8 t ) .  The 
i,h must satisfy the stationary Schrodinger equation 2 4  = 8$, The solution of this 
eigenvalue problem is made very tricky by the condition that $ = 0 on the boundary. 
This does not suit the form of (2.3), so we transform coordinates to the centre of the 
circle. The nice d ,  is transformed to something less agreeable. In polar coordinates 
we get for the Schrodinger equation 

Now choosing the orthonormal basis functions 

where A m /  are the zeros of the Bessel functions, and 

we obtain the matrix elements of % 

R m / n k  = ( n 4 x l m O  
( A i I -  2am for k = 1, n = m 

for n = m & 1 (2.8) 

elsewhere. 

The Bessel functions were computed to 14-figure accuracy using NAG routines for J o ( x )  
and J , (x)  and calculating J n ( x )  from these by upward recursion for large x ( x  > n ) ,  
and downward recursion for small x. The zeros were found by bracketing the root 
using McMahon's formula and the asymptotic formula for large orders [ 111 then using 
Newton-Raphson and bisection methods, and were sorted in ascending order. The 
integrations were computed to ten figures using an adaptive Gauss 30-point and 
Kronrod 61-point NAG routine. This is particularly good for oscillating integrands. 
Diagonalisation was performed using another NAG routine which reduces matrices to 
real symmetric tridiagonal form, and then uses the QL algorithm. Press et a1 [12] was 
a very useful source for many of these routines. 

The eigenvalues are the diagonal elements of the diagonalised Hamiltonian matrix. 
When a = 0 the matrix is already diagonal; the basis functions are also eigenfunctions. 
But the diagonal elements A:! are not in ascending order. We expect the high-lying 
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levels to be most affected as a increases, so the matrix was re-ordered so that the 
low-lying levels are the first to be calculated. This will increase the reliability of the 
computed eigenvalues. We thus sort the zeros A,, in ascending order, using the mapping 
obtained [m,  I] H i to re-order the Hamiltonian matrix 

In order to diagonalise this matrix numerically we need to truncate it to a finite size. 
The difficulty is knowing when the truncated matrix is a good approximation for the 
infinite one. Resorting the matrix elements as above must help, because we expect 
that the eigenvalues for a # 0 are similar to those at a = 0, at least for small a. But 
as a + 00 (the semiclassical limit h + 0) high-lying elements of the matrix are likely to 
affect the low-lying elements significantly. It is hard to tell whether the limiting matrix 
is even diagonalisable. Presumably it is, because otherwise a semiclassical limit would 
not be possible. My own solution to this problem was to always diagonalise two 
matrices of different size (in this case 300 x 300 and 380 x 380) and to then compare 
their eigenvalues. If the relative error of eigenvalues is greater than lo%, that value 
is rejected. By this criterion it was possible to diagonalise matrices in the range 
OS a S 15. 75 matrices of each size were diagonalised within this range. Only the first 
60 gave enough accurate eigenvalues to be used. 

Later we will wish to compare the eigenvalues 8, to the classical energy. In [6] 
we used the kinetic energy K of the particle at the point furthest from the pivot to 
define the energy hypersurface. The corresponding quantised energy levels K ,  are 
given by 

K , ( a )  = 8 , (a ) /2a2+2 .  (2.10) 

When K = 2  the classical phase space has no recognisable structure, and about 98% 
of its volume is chaotic. The limits K + 0 and K -$ CO give integrable systems. So we 
expect eigenvalues Ki centred on K = 2  to be the most chaotic. 

3. The energy levels 

The lowest 50 eigenvalues 8, ( a )  of each matrix are plotted against the parameter a 
in figure 1. For small a and high energy there are a large number of apparent crossings, 
but the resolution of the graph is not good enough to distinguish whether these are 
real or not. Upon closer inspection some appear to be real, but they are more likely 
to be avoided crossings with exceedingly narrow separations of the order exp( -con- 
stantlh). This is predicted by Berry [13] for integrable systems from consideration of 
tunnelling between neighbouring tori (which is disregarded in the semiclassical torus 
quantisation). Thus much of the spectrum for low a appears to be ‘regular’. However, 
for large a and low energies the pattern of the spectrum changes. There are fewer level 
crossings, and those which do exist are actually avoided crossings. The energy levels 
are also much more evenly distributed. This is the transition of the regular spectrum 
where there is a large probability of near degeneracies ( P (  S) + constant as S + 0) to 
a chaotic spectrum where there is level repulsion and hence little probability of 
degeneracies ( P (  S) + 0 as S + 0). Each near crossing shows strong mixing between 
states, and wavefunctions appear to exchange quantum numbers. This is manifested 
by the exchange of their slopes d8 , /da .  Such mixing is required many times if we 
expect regular (in fact separable) energy levels at LY = 0 to be continuously deformed 
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Figure 1. The unfolded energy-level spectrum NSm( S,) for the rotating circle parametrised 
by a = l / h .  

to the ‘random’ energy levels in the chaotic region. For regular wavefunctions the 
energy levels are purely determined by their quantum numbers, so there is no correlation 
between them. So the energy spacing distribution is Poissonian. However for chaotic 
wavefunctions an energy level is not purely determined by its quantum numbers because 
its quantum numbers are not sufficient to label the state, so there must be correlation 
between it and other energy levels. This implies that P ( S )  is not Poissonian. 

The energy level spacing distribution is not a very useful property to plot directly. 
P ( S )  can only be computed averaged over an interval, and in order to have enough 
eigenvalues in each interval (or bin) a large size of bin is required, which reduces the 
resolution of the graph. It is more natural to use the integral distribution: 

l N  
N+m N r = l  

P ( x ) d x =  lim - O ( S - S , )  (3.1) 

and then the spacing values are used fully. i ( S )  is approximated by the empirical 
distribution function ( EDF) 

l N  
N j=l 

I p q ( S ) = -  1 o(s-sj) (3.2) 

where Si is the ratio of the ith level spacing to the local mean level spacing, E(%). 
A 8 (  8) is determined from the gradient of the smoothed spectral staircase, Nsm( 8), 
which is approximated by fitting a sufficiently smooth curve to the spectral staircase, 
N (  8) = E?=, @( 8 - Si ) .  The semiclassical Weyl rule with corrections, for a stationary 
boundary gives a fitting form which has terms in 8 and e. The rotation causes 

- 
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deviation from this rule, and a good fit was obtained only when a quadratic term was 
added: 

Nsm( 8) = a + b 8  + c@+ d g 2  

where a, b, c, d are constants. So 

We would like to investigate the spectrum around a particular energy K 
whether its statistics are related to the degree of chaos in the classical phase 

(3.3) 

(3.4) 

to see 
space. 

Thus I,(S) was computed for several ranges of the quantum label i of the energy 
level K,. There are two properties we wish to maximise: we wish there to be a large 
number of eigenvalues in order to distinguish between different statistics, but opposing 
this we wish the energy range to be small enough in order that the classical phase 
space does not change significantly over the energy range. To be able to do this well 
we require h to be small ( a  large). Ranges i =  1 to 50, i = 5 0  to 100, i =  100 to 150 
were chosen. The energy ranges to which these correspond are shown in table 1. The 
combined ranges i = 1 to 100 and i = 1 to 150 were also used. To each distribution 
the Kolmogorov-Smirnov and the W 2  EDF statistics tests were applied [ 141, to determine 
the goodness of fit to either a Poisson or a GOE distribution. The W 2  test is the most 
powerful because it uses all the data points to evaluate the statistic, whereas the 
Kolmogorov-Smirnov test uses only one. The results for the W 2  test are shown in 
table 2. Let us consider the lowest 50 eigenvalues. For low a the test accepts both 
distributions, so we cannot say which distribution the data fits. For a in the range 
3.2-3.8 and 5.8-6.6 the data fits only the Poisson, and for a in the range 4.0-5.4 and 
6.8-12.0 the data fits only the GOE. Above a = 12.0 the energy levels lose accuracy. 
The results show that the spectrum does behave as expected for large a. However 
there is not a smooth transition from Poisson to GOE statistics as we might have 
expected, but an intermittent one. At one point the spectrum becomes extremely 
regular, where we might have expected it to be quite chaotic. We have no explanation 
for why this happens. The next range of eigenvalues from i=50-100 has an energy 
range which does not enter the chaotic region until a is about 8 or 9. There is some 
evidence for a transition in the spectrum near a = 8.8, but above this eigenvalues are 
unreliable, and there is again evidence for GOE statistics for small a (near 3.8). The 
spectrum for i = 100-150 shows little evidence for GOE statistics in the range of 
a = 0.0-5.0 which could be tested. This is expected, because none of the energies enter 
the chaotic region. For i = 1-100 and i = 1-150 the larger number of eigenvalues will 
make the statistical tests more powerful, but the energy range is too large to expect 
uniform statistics except at very low a, where we expect Poissonian statistics almost 
everywhere. Typical members of these sets of distributions are shown in figure 2. 
Although sometimes it is not possible to reliably distinguish between pure statistics, 
and statistics which are a mixture of Poisson and GOE, many of the EDF are much 
closer to one of the theoretical distributions than would be expected by statistical 
analysis. Such effects have been mentioned before, for example in [ 5 ] .  Because of 
these effects, this method of fitting the EDF to a model distribution was tried, even 
though the statistics may not be powerful enough for 50 values to justify the significance 
of the fit. It is assumed as an approximation that there are two types of energy levels, 
one Poissonian and the other GOE, whose mixture is constant over the energy range 
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Table 1; The first, 50th, 100th and 150th energy eigenvalues of the rotating circle as defined 
by the equation for K ,  in the text. It shows that the energy range condenses onto the most 
chaotic strata for energy hypersurface in phase space. Note that the energy is parametrised 
by a = l / h .  

0.400 
0.800 
1.200 
1.600 
2.000 
2.400 
2.800 
3.200 
3.600 
4.000 
4.400 
4.800 
5.200 
5.600 
6.000 
6.400 
6.800 
7.200 
7.600 
8.000 
8.400 
8.800 
9.200 
9.600 

10.000 
10.400 
10.800 
11.200 
11.600 
12.000 

2.5000 
1.2500 
0.8333 
0.6250 
0.5000 
0.4167 
0.3571 
0.3 125 
0.2778 
0.2500 
0.2273 
0.2083 
0.1923 
0.1786 
0.1667 
0.1563 
0.1471 
0.1389 
0.1316 
0.1250 
0.1 190 
0.1136 
0.1087 
0.1042 
0.1000 
0.0962 
0.0926 
0.0893 
0.0862 
0.0833 

19.8 
6.2 
3.7 
2.7 
2.2 
1.9 
1.7 
1.5 
1.4 
1.3 
1.2 
1.1 
1.1 
1 .o 
1 .o 
0.9 
0.9 
0.8 
0.8 
0.8 
0.8 
0.7 
0.7 
0.7 
0.7 
0.7 
0.6 
0.6 
0.6 
0.6 

1276.9 2549.9 
316.6 627.2 
139.9 274.3 
78.3 152.4 
49.1 97.3 
34.0 67.6 
24.8 49.7 
19.0 38.1 
15.2 30.2 
12.5 24.5 
10.3 20.1 
8.6 16.8 
7.4 14.3 
6.5 12.3 
5.9 10.8 
5.3 9.5 
4.7 8.5 
4.3 7.7 
4.0 6.9 
3.7 6.4 
3.4 5.9 
3.2 5.4 
3.0 5.0 
2.8 4.7 
2.7 4.4 
2.5 4.2 
2.4 3.9 
2.3 3.6 
2.2 3.4 
2.2 3.3 

3810.3 
940.6 
413.0 
23 1.5 
147.1 
101.8 
74.3 
57.0 
44.8 
36.4 
30.1 
25.1 
21.4 
18.5 
16.2 
14.2 
12.6 
11.3 
10.2 
9.3 
8.4 
7.7 
7.1 
6.5 
6.1 
5.7 
5.4 
5.0 
4.8 
4.5 

considered. The resulting distribution depends on one parameter, the proportions of 
each type. The integral distribution is 

I ( S ;  p )  = 1 - p  exp(-vx) exp[-$. i r (p~)~]-  v exp(-vx) erfc(tJ;;px) (3.5) 
where p is the proportion of GOE eigenvalues and v that of Poissonian eigenvalues, 
so p + v = 1. Berry and Robnik [ 151 have calculated the semiclassical distribution 
when the energy levels are chosen in a narrow interval. This depends on the Liouville 
measure of the sum of the classically regular regions and on the separate Liouville 
measures of the large chaotic regions. If there is more than one large chaotic region, 
then the distribution is not of the form of (3.5) in the semiclassical limit. However, it 
is the transition region for which we are using (3.5) and here there is no theoretical 
result, because the system is not semiclassical and the energy interval is large. The 
data were fitted to the integral distribution rather than to P( S; p )  because more detail 
is included in I ( S ;  p ) .  The resulting fitting parameter p for the three ranges of energy 
levels is plotted against CY in figure 3. Clearly there is a sharp change in statistics at 
CY = 6 for the lowest 50 eigenvalues. This is reflected in similar transitions for the higher 
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Table 2. The W2 statistic W:,,,,?* for the nih eigenvalue to the nih eigenvalue. Table 1 gives 
the corresponding energy ranges. The rejection of the fit is at a significance level of 5% 
(critical Wf,=0.460). The A or R after the statistic denotes acceptance or rejection 
respectively of the fit. 

W2 statistic for Wigner distribution W2 statistic for Poisson distribution 

Ly WLO w:o,,oo w:oo,,,o w:,m w:o,,oo w:,o,,so 

0.4 
0.8 
1.2 
1.6 
2.0 
2.4 
2.8 
3.2 
3.6 
4.0 
4.4 
4.8 
5.2 
5.6 
6.0 
6.4 
6.8 
7.2 
7.6 
8.0 
8.4 
8.8 
9.2 
9.6 

10.0 
10.4 
10.8 
11.2 
11.6 
12.0 

0.300 A 
0.257 A 
0.228 A 
0.267 A 
0.320 A 
0.166 A 
0.300 A 
0.523 R 
0.478 R 
0.219 A 
0.237 A 
0.185 A 
0.131 A 
0.302 A 
0.852 R 
0.809 R 
0.179 A 
0.270 A 
0.113 A 
0.071 A 
0.055 A 
0.071 A 
0.112A 
0.074 A 
0.097 A 
0.080 A 
0.128 A 
0.129 A 
0.159 A 
0.196 A 

, 0.604 R 
0.441 A 
0.578 R 
0.770 R 
0.624 R 
0.552 R 
0.392 A 
0.284 A 
0.279 A 
0.333 A 
0.479 R 
0.912 R 
1.854 R 
1.413 R 
1.086 R 
0.857 R 
0.656 R 
0.701 R 
0.812 R 
0.646 R 
0.533 R 
0.317 A 
0.695 R 
0.739 R 
0.958 R 
1.353 R 
0.764 R 
0.503 R 
0.178 A 
0.138 A 

0.507 R 
0.546 R 
0.576 R 
0.785 R 
0.390 A 
0.272 A 
0.703 R 
1.068 R 
0.941 R 
1.003 R 
0.972 R 
1.277 R 
0.742 R 
0.638 R 
0.780 R 
1.317 R 
1.086 R 
0.903 R 
1.025 R 
1.254 R 
2.038 R 
1.850 R 
1.846 R 
3.115 R 
3.906 R 
3.904 R 
1.867 R 
1.027 R 
0.782 R 
1.455 R 

0.257 A 
0.294 A 
0.400 A 
0.416 A 
0.235 A 
0.328 A 
0.293 A 
0.100 A 
0.161 A 
0.508 R 
0.482 R 
0.822 R 
0.695 R 
0.229 A 
0.113 A 
0.115 A 
0.500 R 
0.630 R 
1.236 R 
0.659 R 
0.894 R 
0.826 R 
0.685 R 
0.968 R 
1.182 R 
1.026 R 
1.232 R 
1.509 R 
1.836 R 
2.281 R 

0.124 A 
0.162 A 
0.081 A 
0.063 A 
0.045 A 
0.140 A 
0.176 A 
0.338 A 
0.299 A 
0.179 A 
0.112 A 
0.043 A 
0.174 A 
0.056 A 
0.039 A 
0.073 A 
0.058 A 
0.062 A 
0.026 A 
0.065 A 
0.150 A 
0.247 A 
0.058 A 
0.114A 
0.102 A 
0.078 A 
0.028 A 
0.202 A 
0.609 R 
0.436 A 

0.101 A 
0.074 A 
0.084 A 
0.066 A 
0.144 A 
0.232 A 
0.135 A 
0.040 A 
0.043 A 
0.035 A 
0.087 A 
0.048 A 
0.051 A 
0.056 A 
0.041 A 
0.051 A 
0.062 A 
0.353 A 
0.066 A 
0.136 A 
0.281 A 
0.310 A 
0.345 A 
0.671 R 
0.940 R 
0.927 R 
0.362 A 
0.147 A 
0.196 A 
0.161 A 

levels. The lower eigenvalues also seem to fit a purely GOE distribution for a above 
9.6. This tails off after a = 11.4, but this may to be due to loss of accuracy in the 
eigenvalues. From the randomness of the data and the empirical form of (3.5), we do 
not expect to form any other conclusions from this fit. 

4. Lyapunov exponents and chaotic volume 

Using the standard method of Bennettin and Strelcyn [ 161, we calculate the Lyapunov 
exponent A(x) of a trajectory x ( t )  in phase space. A(x) is a limiting value calculated 
over a large number of reflections. We have found numerically that A is independent 
of the length and direction of the initial separation vector 6x, but that small fluctuations 
in A are observed (of approximately 3%) as it approaches its limiting value even after 
10 000 reflections. This is in agreement with the work of Bennettin and Strelcyn. 
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5 

Figure 2. The level spacing distribution (ieft) and the integral (cumulative) distribution 
(right) for the rotating circle. The broken curve is the Poisson distribution, the chain 
curve is the Wigner distribution and the full curve is the distribution found by fitting the 
data by least squares to equation (3.5). The figures (i)-(v) correspond to a = 2, 4, 6 ,  8, 10 
respectively, and are drawn for ( a )  the first 50 eigenvalues ( b )  the next 50 eigenvalues (c)  
the eigenvalues from 2Z,oo-%',50. 

For the rotating billiard problem, the trajectory x(t )  is given in terms of its polar 
position ( r ,  e )  from the centre of the circle, and the speed v :nd direction + of its 
motion. Conservation of energy restricts the trajectory to three dimensions; when r = 1 
v is a function of 0: 

(4.1) v2( e) =  COS e + K - I). 

At each bounce r = 1, so the length ds  of 6x is given by 

ds2 = (1 +?) de2+  v2  d$'. (4.2) 

The Lyapunov exponent measures very clearly whether a trajectory belongs to a 
regular region or a chaotic one, and how chaotic that region is. If the limiting value 
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0.8 

0 

I 
0 4 8 12 

1 

a 
Figure 3. The EDF are fitted to a theoretical distribution of a uniform mixture of Poisson 
and Wigner energy levels. The resulting fitting parameter p which measures the proportion 
of Wigner energy levels is plotted against a = l /h .  Note that p = 1 gives a pure Wigner 
distribution and p =O gives a pure Poisson distribution. The full curve is for the first 50 
eigenvalues, the broken curve for the next 50, and the chain curve for ~ l o o - % 1 5 0 .  

is zero (numerically set to some cutoff point) then the region is regular, otherwise it 
is chaotic. Negative values of A are never found for Hamiltonian systems because the 
sum of the characteristic exponents is always zero, so the maximal exponent is always 
positive. 

The chaotic volume x ( K )  is defined as the proportion of classically accessible 
phase space M which is chaotic; mathematically 

where p is the Liouville measure of the flow, and using equation (4.2) we find 

d p  = ( v 2 +  sin’ e)”’ dB d+. (4.4) 

To calculate x, a Monte Carlo method is used. A uniform distribution of random 
points in (e, +) space is chosen. The Lyapunov exponent is calculated for each 
trajectory starting at these points, and if A > 0.05 it is accepted as chaotic. The Monte 
Carlo estimate is 

(4.5) 

where N is the number of Lyapunov exponents sampled, and (f) denotes the mean 
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value off: The numerator of (4.3) is calculated using this. The denominator was found 
by the same method, and it was also calculated by a quadrature method in order to 
test the Monte Carlo method for accuracy. 

For each energy K, Lyapunov exponents for 250 points were calculated for 300 
bounces. The resulting graph is plotted in figure 4, The statistical error from the Monte 
Carlo integration is much larger than the systematic error due to evaluating R ( x )  for 
this number of bounces, so the error bars are two standard deviations thick as evaluated 
by the Monte Carlo method. To compare this with the energy ranges used for level 

0.8 f i -1 
I I 

1. I 4 

0 . 4  1 7 I 
I I T  
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0 2 4 6 
K 

Figure 4. The chaotic volume x of the rotating circular billiard against the energy K of 
the system. 
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Figure 5. The energy eigenvalues K , ,  K,,, K,oa, K , , ,  as h +O, showing the convergence 
near f i  =A onto the most classically chaotic energy band. The thick vertical line shows 
the energy where x ( K )  peaks and the classical motion is ergodic, and the thin lines on 
either side define the band of energies where x > E (for small E )  and where at least some 
of the motion is chaotic. 
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spacing distributions, figure 5 shows the relevant Ki eigenvalues plotted against h, and 
the range of K for which the system is classically chaotic. 

5. Discussion 

In this paper we have attempted to explore the quantum mechanics of a simple system, 
which is classically chaotic in some regions of phase space. We have encountered 
numerical problems which restrict how far we can calculate the semiclassical limit. As 
h + 0, an impractically large matrix needs to be diagonalised in order to determine 
sufficient eigenvalues for a meaningful level-spacing distribution. This is to be expected; 
as the semiclassical limit is approached, less of the classical complexity of chaotic 
orbits is smoothed by quantum effects, and so higher-frequency terms become 
important. 

This system has another problem which limits the applicability of the theory when 
h is large. The chaotic volume changes with energy, so to calculate P( S) corresponding 
to a particular mixture of chaotic and regular orbits the energy interval must be small, 
otherwise the spectral statistics are not uniform. But for large A, which includes most 
of the range of cy that can be examined, the energy interval containing sufficient 
eigenvalues is too large. 

These two difficulties mean that many of our results, particularly those made for 
very small cy, are not expected to be in very good agreement with theoretical predictions. 
For large cy we do expect our results to match with theory and indeed our results for 
cy > =9.4 ( h  < = 1/9.4) indicate that P ( S )  is approaching a Wigner distribution for 
eigenvalues which are in a classically highly chaotic region. But we also have very 
unexpected behaviour in the transition region near a = 6 .  The distribution P ( S )  
becomes very Poissonian, much more than would even be expected statistically (for 
such a small sample as 50 eigenvalues the distribution is not expected to fit the exact 
distribution particularly well) and this happens for eigenvalues that are in an energy 
range that spans the most classically chaotic energies of the system. The W 2  statistic 
for the Poisson distribution is 0.082 for cy = 5.8, and also low for nearby values of cy. 

These are well within the significance level of 5 % ,  Wf, = 0.460. We were not expecting 
good agreement with theory here; however neither were we expecting the system to 
appear as regular as this. Note also that the distribution is also very Poissonian near 
cy = 6 for the next two energy ranges (although the highest eigenvalues above the 100th 
are not as reliable as the lower ones for large a ) .  

It is even more interesting when one compares this behaviour with that of the 
system when h is large (cy < l),  or when the circle is stationary (equivalent to a = O ) .  
Here, as expected, the system does not show very good Poisson behaviour, because 
the lowest 50 eigenvalues are not typical and it is the higher ones which behave as 
such. So even the most regular system anyone can think of, namely that of a perfectly 
circular billiard, does not appear to have as good Poisson statistics for low eigenvalues 
as our system when cy is close to 6 !  

Many of the problems we have encountered were predicted by Berry [15]. Other 
work has been carried out on systems which show mixed regular and chaotic motion. 
Seligman et a1 have calculated level-spacing statistics and spectral rigidity for two 
particles in polynomial interactive and external potentials [ 171. They have been able 
to calculate for smaller h and for much larger matrices, so their results show much 
better agreement with the semiclassical theory than ours. Matsushita and Terasaka 
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[18] and Scott [I91 have also calculated level spacing statistics for mixing systems. 
But they have not found the effect mentioned above, nor have they calculated statistics 
for such large h. 

In conclusion, we found that our system behaves as expected in the semiclassical 
limit, according to random-matrix theory and theory relating classical chaotic 
phenomena to the semiclassical behaviour. But in the full quantum mechanical regime, 
there seems to be behaviour which is related to the above, but which present theory 
does not explain, and has not yet been developed. We see this as a challenge in the 
development of the theory of non-integrable quantum mechanics, although we have 
seen only a glimpse of the actual effect due to numerical limitations. 
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